MATH 120A Prep: Functions

Facts to Know:

Function Properties: Consider a function $f: X \to Y$.

- Injective/One-to-one Each input goes to a difficult output.

 To prove: Assume $f(x) = f(x_2)$, show $X_1 = X_2$.
- · Surjective/Onto- Every element in the codoman (4) is the image of an element of X.

To prove: let ye Y, want to show there is an xeX such that T(x)=y.

· Bijective - A function is bijective it and only it it is injective.

and surjective.

Examples:

1. (a) Determine whether the exponential map $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ is injective and/or surjective.

L'A Belefilm

ex Injective: Suppose $f(x_1) = f(x_2)$, so $e^{x_1} = e^{x_2}$.

Apply In to both sides, so $\ln(e^{x_1}) = \ln(e^{x_2})$ $X_1 = X_2$. $e^{x_1} = x_2$.

Surjective: $e^{x_1} = x_2$.

Therefore $e^{x_1} = x_2$ are regarded or two, so it is not surjective.

(b) What changes if we consider this as a function $f: \mathbb{R} \to \mathbb{R}^+$ where $\mathbb{R}^+ = \{r \in \mathbb{R} : r > 0\}$?

hjedive: Some proof applies.

Surjective: let relRt, so rso. Want to Food is a number x in IR so ex=r. let x= ln(r).

ex=eln(r) = r, so surjective.

This function is a bijection.

2. Is the map
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 where $g(x,y) = \mathbb{R}^2$ by pictive? Is it surjective?

Injective: No. $f(x) = x^2$ is not injective since $1^2 = 1$, $(-1)^2 = 1$.

Choose $y = 0$, $g(x_0) = x^2$
 $g(1,0) = 1^2 - 0^2 = 1$ and injective.

 $g(1,0) = (-1)^2 - 0^2 = 1$ and injective.

Surjective: x^2 is possible.

Case $2: P \ge 0$

Case $2: P \ge 0$

Case $2: P \ge 0$
 $x_0 = x_0 = 0$
 $x_0 = x_0 = 0$
 $x_0 = x_0 = 0$

3. Let S be the set $\{(x,y) \in \mathbb{R}^2: x \ne y\}$. Show the map $h: S \to \mathbb{R}^2$ defined by $h(x,y) = (x-y,x^2-y^2)$ is injective but not surjective.

Injective: Suppose we have $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Such that $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Such that $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Such that $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Such that $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Such that $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Such that $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0 \in \mathbb{R}^2: x \ne y\}$. Show the map $\{x_0, y_0$

Not sujective: $h(x_iy)=(0,0)$ $h(x_iy)=(x_iy_i x_i^2-y_i^2)=(0,0)$ $-> x_i-y=0$ $\longrightarrow x_i=y$ so not in the domain.